Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 401
Filtrar
1.
Crit Rev Eukaryot Gene Expr ; 34(4): 69-102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505874

RESUMO

Vaccination rates for the human papillomavirus (HPV) among rural youth in northern New England lag those of more urbanized areas. Reasons include a lack of available medical offices, time constraints, perceptions of vaccines and HPV, and, to a smaller degree, delays caused by the COVID-19 pandemic. We have a responsibility to increase vaccinations in these communities. To do so, vaccination experts recommend addressing the three C's of vaccination hesitation: confidence, complacency, and convenience. With this framework as our foundation, in this article we detail a plan to address these important elements, and we add several more C's: clinics, communication, collaboration, community, capacity, and commitment to the list as we discuss the essential pieces-human, infrastructural, and perceptual-needed to create and promote successful, community-supported, school-based HPV vaccination clinics to serve youths aged nine to 18. We then integrate research and storytelling science into an innovative Persuasion Playbook, a guide for local opinion leaders to use in creating evidence-based, pro-vaccine messages on the community level to promote the clinics via evidence-based, pro-vaccination messages.


Assuntos
Neoplasias , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Humanos , Adolescente , Infecções por Papillomavirus/epidemiologia , Pandemias , Vacinação , Comunicação , New England
2.
Bone ; 181: 117043, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341164

RESUMO

Bone formation and homeostasis are controlled by environmental factors and endocrine regulatory cues that initiate intracellular signaling pathways capable of modulating gene expression in the nucleus. Bone-related gene expression is controlled by nucleosome-based chromatin architecture that limits the accessibility of lineage-specific gene regulatory DNA sequences and sequence-specific transcription factors. From a developmental perspective, bone-specific gene expression must be suppressed during the early stages of embryogenesis to prevent the premature mineralization of skeletal elements during fetal growth in utero. Hence, bone formation is initially inhibited by gene suppressive epigenetic regulators, while other epigenetic regulators actively support osteoblast differentiation. Prominent epigenetic regulators that stimulate or attenuate osteogenesis include lysine methyl transferases (e.g., EZH2, SMYD2, SUV420H2), lysine deacetylases (e.g., HDAC1, HDAC3, HDAC4, HDAC7, SIRT1, SIRT3), arginine methyl transferases (e.g., PRMT1, PRMT4/CARM1, PRMT5), dioxygenases (e.g., TET2), bromodomain proteins (e.g., BRD2, BRD4) and chromodomain proteins (e.g., CBX1, CBX2, CBX5). This narrative review provides a broad overview of the covalent modifications of DNA and histone proteins that involve hundreds of enzymes that add, read, or delete these epigenetic modifications that are relevant for self-renewal and differentiation of mesenchymal stem cells, skeletal stem cells and osteoblasts during osteogenesis.


Assuntos
Osteogênese , Fatores de Transcrição , Osteogênese/genética , Fatores de Transcrição/metabolismo , Lisina/metabolismo , Proteínas Nucleares/genética , Diferenciação Celular/genética , Epigênese Genética , Osteoblastos/metabolismo , Transferases/genética , Transferases/metabolismo
4.
Cell Death Dis ; 15(1): 13, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182577

RESUMO

Osteosarcoma is an aggressive bone tumor that primarily affects children and adolescents. This malignancy is highly aggressive, associated with poor clinical outcomes, and primarily metastasizes to the lungs. Due to its rarity and biological heterogeneity, limited studies on its molecular basis exist, hindering the development of effective therapies. The WW domain-containing oxidoreductase (WWOX) is frequently altered in human osteosarcoma. Combined deletion of Wwox and Trp53 using Osterix1-Cre transgenic mice has been shown to accelerate osteosarcoma development. In this study, we generated a traceable osteosarcoma mouse model harboring the deletion of Trp53 alone (single-knockout) or combined deletion of Wwox/Trp53 (double-knockout) and expressing a tdTomato reporter. By tracking Tomato expression at different time points, we detected the early presence of tdTomato-positive cells in the bone marrow mesenchymal stem cells of non-osteosarcoma-bearing mice (young BM). We found that double-knockout young BM cells, but not single-knockout young BM cells, exhibited tumorigenic traits both in vitro and in vivo. Molecular and cellular characterization of these double-knockout young BM cells revealed their resemblance to osteosarcoma tumor cells. Interestingly, one of the observed significant transcriptomic changes in double-knockout young BM cells was the upregulation of Myc and its target genes compared to single-knockout young BM cells. Intriguingly, Myc-chromatin immunoprecipitation sequencing revealed its increased enrichment on Myc targets, which were upregulated in double-knockout young BM cells. Restoration of WWOX in double-knockout young BM cells reduced Myc protein levels. As a prototype target, we demonstrated the upregulation of MCM7, a known Myc target, in double-knockout young BM relative to single-knockout young BM cells. Inhibition of MCM7 expression using simvastatin resulted in reduced proliferation and tumor cell growth of double-knockout young BM cells. Our findings reveal BM mesenchymal stem cells as a platform to study osteosarcoma and Myc and its targets as WWOX effectors and early molecular events during osteosarcomagenesis.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Proteínas Proto-Oncogênicas c-myc , Oxidorredutase com Domínios WW , Animais , Humanos , Camundongos , Neoplasias Ósseas/genética , Osteossarcoma/genética , Proteínas Supressoras de Tumor/genética , Regulação para Cima/genética , Oxidorredutase com Domínios WW/genética , Oxidorredutase com Domínios WW/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
5.
Crit Rev Eukaryot Gene Expr ; 34(2): 61-71, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38073442

RESUMO

Long non-coding RNA (lncRNA)-mediated control of gene expression contributes to regulation of biological processes that include proliferation and phenotype, as well as compromised expression of genes that are functionally linked to cancer initiation and tumor progression. lncRNAs have emerged as novel targets and biomarkers in breast cancer. We have shown that mitotically associated lncRNA MANCR is expressed in triple-negative breast cancer (TNBC) cells and that it serves a critical role in promoting genome stability and survival in aggressive breast cancer cells. Using an siRNA strategy, we selectively depleted BRD2, BRD3, and BRD4, singly and in combination, to establish which bromodomain proteins regulate MANCR expression in TNBC cells. Our findings were confirmed by using in situ hybridization combined with immunofluorescence analysis that revealed BRD4, either alone or with BRD2 and BRD3, can support MANCR regulation of TNBC cells. Here we provide evidence for MANCR-responsive epigenetic control of super enhancers by histone modifications that are required for gene transcription to support cell survival and expression of the epithelial tumor phenotype in triple negative breast cancer cells.


Assuntos
RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/genética
6.
Crit Rev Eukaryot Gene Expr ; 34(1): 69-74, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37824393

RESUMO

The enhanced uptake of glucose by cancer cells via aerobic glycolysis occurs when the lactic acid pathway is favored over the citric acid cycle. The lactic acid cycle in cancer cells influences the cytosolic concentration of metabolic fluorophores including NADH (the reduced form of nicotinamide adenine dinucleotide) and flavin adenine dinucleotide (FAD). In particular, the literature has shown that breast cancer influences the relative magnitude of fluorescence from NADH and FAD. A multispectral imaging system has been developed for rapid non-destructive imaging of intrinsic fluorescence in tissue. This paper compares in vivo data to fresh ex vivo data gathered as a function of time in mouse models. The data indicate that, if measured within 30 min of excision, a cancer diagnosis in fresh ex vivo tissue correlates with a cancer diagnosis in in vivo tissue. These results justify a plan to evaluate fresh ex vivo human tissue to quantify the sensitivity and specificity of the multispectral system.


Assuntos
Neoplasias da Mama , NAD , Camundongos , Animais , Humanos , Feminino , NAD/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Neoplasias da Mama/diagnóstico por imagem , Ácido Láctico
7.
Sci Rep ; 13(1): 20314, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985890

RESUMO

The skeleton forms from multipotent human mesenchymal stem cells (hMSCs) competent to commit to specific lineages. Long noncoding RNAs (lncRNAs) have been identified as key epigenetic regulators of tissue development. However, regulation of osteogenesis by lncRNAs as mediators of commitment to the bone phenotype is largely unexplored. We focused on LINC01638, which is highly expressed in hMSCs and has been studied in cancers, but not in regulating osteogenesis. We demonstrated that LINC01638 promotes initiation of the osteoblast phenotype. Our findings reveal that LINC01638 is present at low levels during the induction of osteoblast differentiation. CRISPRi knockdown of LINC01638 in MSCs prevents osteogenesis and alkaline phosphatase expression, inhibiting osteoblast differentiation. This resulted in decreased MSC growth rate, accompanied by double-strand breaks, DNA damage, and cell senescence. Transcriptome profiling of control and LINC01638-depleted hMSCs identified > 2000 differentially expressed mRNAs related to cell cycle, cell division, spindle formation, DNA repair, and osteogenesis. Using ChIRP-qPCR, molecular mechanisms of chromatin interactions revealed the LINC01638 locus (Chr 22) includes many lncRNAs and bone-related genes. These novel findings identify the obligatory role for LINC01638 to sustain MSC pluripotency regulating osteoblast commitment and growth, as well as for physiological remodeling of bone tissue.


Assuntos
Células-Tronco Mesenquimais , RNA Longo não Codificante , Humanos , Osteogênese/genética , Autorrenovação Celular , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Diferenciação Celular/genética
8.
Res Sq ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37693373

RESUMO

The skeleton forms from multipotent human mesenchymal stem cells (hMSCs) competent to commit to specific lineages. Long noncoding RNAs (lncRNAs) have been identified as key epigenetic regulators of tissue development. However, regulation of osteogenesis by lncRNAs as mediators of commitment to the bone phenotype is largely unexplored. We focused on LINC01638, which is highly expressed in hMSCs and has been studied in cancers, but not in regulating osteogenesis. We demonstrated that LINC01638 promotes initiation of the osteoblast phenotype. Our findings reveal that LINC01638 is present at low levels during the induction of osteoblast differentiation. CRISPRi knockdown of LINC01638 in MSCs prevents osteogenesis and alkaline phosphatase expression, inhibiting osteoblast differentiation. This resulted in decreased MSC cell growth rate, accompanied by double-strand breaks, DNA damage, and cell senescence. Transcriptome profiling of control and LINC01638-depleted hMSCs identified > 2,000 differentially expressed mRNAs related to cell cycle, cell division, spindle formation, DNA repair, and osteogenesis. Using ChIRP-qPCR, molecular mechanisms of chromatin interactions revealed the LINC01638 locus (Chr 22) includes many lncRNAs and bone-related genes. These novel findings identify the obligatory role for LINC01638 to sustain MSC pluripotency regulating osteoblast commitment and growth, as well as for physiological remodeling of bone tissue.

9.
Bone Rep ; 19: 101704, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37593409

RESUMO

Osteogenic differentiation of mesenchymal cells is controlled by epigenetic enzymes that regulate post-translational modifications of histones. Compared to acetyl or methyltransferases, the physiological functions of protein arginine methyltransferases (PRMTs) in osteoblast differentiation remain minimally understood. Therefore, we surveyed the expression and function of all nine mammalian PRMT members during osteoblast differentiation. RNA-seq gene expression profiling shows that Prmt1, Prmt4/Carm1 and Prmt5 represent the most prominently expressed PRMT subtypes in mouse calvarial bone and MC3T3 osteoblasts as well as human musculoskeletal tissues and mesenchymal stromal cells (MSCs). Based on effects of siRNA depletion, it appears that PRMT members have different functional effects: (i) loss of Prmt1 stimulates and (ii) loss of Prmt5 decreases calcium deposition of mouse MC3T3 osteoblasts, while (iii) loss of Carm1 is inconsequential for calcium deposition. Decreased Prmt5 suppresses expression of multiple genes involved in mineralization (e.g., Alpl, Ibsp, Phospho1) consistent with a positive role in osteogenesis. Depletion of Prmt1, Carm1 and Prmt5 has intricate but modest time-dependent effects on the expression of a panel of osteoblast differentiation and proliferation markers but does not change mRNA levels for select epigenetic regulators (e.g., Ezh1, Ezh2, Brd2 and Brd4). Treatment with the Class I PRMT inhibitor GSK715 enhances extracellular matrix mineralization of MC3T3 cells, while blocking formation of H3R17me2a but not H4R3me2a marks. In sum, Prmt1, Carm1 and Prmt5 have distinct biological roles during osteoblast differentiation, and different types histone H3 and H4 arginine methylation may contribute to the chromatin landscape during osteoblast differentiation.

10.
Crit Rev Eukaryot Gene Expr ; 33(8): 11-29, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37606161

RESUMO

The human papillomavirus is associated with a range of cancers. A vaccine introduced in 2006 has dramatically decreased the incidence of these cancers, but Americans still experience over 47,000 new cases of HPV-related cancers each year. The situation is worse in rural areas, where vaccination rates lag the national average, making HPV a significant health disparity issue. This article lays out an evidence-based HPV vaccine-promotion strategy that will serve as part of a campaign to improve health equity in rural northern New England in a process that is repeatable and sustainable. The campaign includes the following elements: partnerships with state departments of health and trusted community opinion leaders, evidence-based storytelling, local social media, traditional media, and school-based pop-up vaccination clinics. Borrowing from marketing and social marketing frameworks and guided by public health perspectives, we begin with psychographic and geodemographic information about our target audience, followed by a discussion about relevant models, frameworks, and research related to persuasive storytelling. We conclude with the outline of a guidebook to foster the creation of persuasive stories as part of a sustainable, replicable HPV vaccination campaign.


Assuntos
Infecções por Papillomavirus , Vacinas contra Papillomavirus , Humanos , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/prevenção & controle , New England/epidemiologia , Papillomavirus Humano , Vacinação
12.
Gene ; 872: 147441, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37094694

RESUMO

Human Histone Locus Bodies (HLBs) are nuclear subdomains comprised of clustered histone genes that are coordinately regulated throughout the cell cycle. We addressed temporal-spatial higher-order genome organization for time-dependent chromatin remodeling at HLBs that supports control of cell proliferation. Proximity distances of specific genomic contacts within histone gene clusters exhibit subtle changes during the G1 phase in MCF10 breast cancer progression model cell lines. This approach directly demonstrates that the two principal histone gene regulatory proteins, HINFP (H4 gene regulator) and NPAT, localize at chromatin loop anchor-points, denoted by CTCF binding, supporting the stringent requirement for histone biosynthesis to package newly replicated DNA as chromatin. We identified a novel enhancer region located âˆ¼ 2 MB distal to histone gene sub-clusters on chromosome 6 that consistently makes genomic contacts with HLB chromatin and is bound by NPAT. During G1 progression the first DNA loops form between one of three histone gene sub-clusters bound by HINFP and the distal enhancer region. Our findings are consistent with a model that the HINFP/NPAT complex controls the formation and dynamic remodeling of higher-order genomic organization of histone gene clusters at HLBs in early to late G1 phase to support transcription of histone mRNAs in S phase.


Assuntos
Neoplasias da Mama , Histonas , Humanos , Feminino , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Neoplasias da Mama/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Corpos Nucleares , Família Multigênica
13.
Crit Rev Eukaryot Gene Expr ; 33(3): 85-97, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37017672

RESUMO

Higher-order genomic organization supports the activation of histone genes in response to cell cycle regulatory cues that epigenetically mediates stringent control of transcription at the G1/S-phase transition. Histone locus bodies (HLBs) are dynamic, non-membranous, phase-separated nuclear domains where the regulatory machinery for histone gene expression is organized and assembled to support spatiotemporal epigenetic control of histone genes. HLBs provide molecular hubs that support synthesis and processing of DNA replication-dependent histone mRNAs. These regulatory microenvironments support long-range genomic interactions among non-contiguous histone genes within a single topologically associating domain (TAD). HLBs respond to activation of the cyclin E/CDK2/NPAT/HINFP pathway at the G1/S transition. HINFP and its coactivator NPAT form a complex within HLBs that controls histone mRNA transcription to support histone protein synthesis and packaging of newly replicated DNA. Loss of HINFP compromises H4 gene expression and chromatin formation, which may result in DNA damage and impede cell cycle progression. HLBs provide a paradigm for higher-order genomic organization of a subnuclear domain that executes an obligatory cell cycle-controlled function in response to cyclin E/CDK2 signaling. Understanding the coordinately and spatiotemporally organized regulatory programs in focally defined nuclear domains provides insight into molecular infrastructure for responsiveness to cell signaling pathways that mediate biological control of growth, differentiation phenotype, and are compromised in cancer.


Assuntos
Cromatina , Histonas , Histonas/metabolismo , Ciclina E/genética , Ciclina E/metabolismo , Proteínas Nucleares/genética , Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Epigênese Genética
14.
Cells ; 12(7)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37048137

RESUMO

TGF-ß signaling is a vital regulator for maintaining articular cartilage homeostasis. Runx transcription factors, downstream targets of TGF-ß signaling, have been studied in the context of osteoarthritis (OA). Although Runx partner core binding factor ß (Cbfß) is known to play a pivotal role in chondrocyte and osteoblast differentiation, the role of Cbfß in maintaining articular cartilage integrity remains obscure. This study investigated Cbfß as a novel anabolic modulator of TGF-ß signaling and determined its role in articular cartilage homeostasis. Cbfß significantly decreased in aged mouse articular cartilage and human OA cartilage. Articular chondrocyte-specific Cbfb-deficient mice (Cbfb△ac/△ac) exhibited early cartilage degeneration at 20 weeks of age and developed OA at 12 months. Cbfb△ac/△ac mice showed enhanced OA progression under the surgically induced OA model in mice. Mechanistically, forced expression of Cbfß rescued Type II collagen (Col2α1) and Runx1 expression in Cbfß-deficient chondrocytes. TGF-ß1-mediated Col2α1 expression failed despite the p-Smad3 activation under TGF-ß1 treatment in Cbfß-deficient chondrocytes. Cbfß protected Runx1 from proteasomal degradation through Cbfß/Runx1 complex formation. These results indicate that Cbfß is a novel anabolic regulator for cartilage homeostasis, suggesting that Cbfß could protect OA development by maintaining the integrity of the TGF-ß signaling pathway in articular cartilage.


Assuntos
Cartilagem Articular , Osteoartrite , Camundongos , Animais , Humanos , Cartilagem Articular/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade beta de Fator de Ligação ao Core/metabolismo , Transdução de Sinais , Osteoartrite/metabolismo , Homeostase
15.
PLoS One ; 18(3): e0282473, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36940196

RESUMO

The tumor microenvironment is a complex mixture of cell types that bi-directionally interact and influence tumor initiation, progression, recurrence, and patient survival. Mesenchymal stromal cells (MSCs) of the tumor microenvironment engage in crosstalk with cancer cells to mediate epigenetic control of gene expression. We identified CD90+ MSCs residing in the tumor microenvironment of patients with invasive breast cancer that exhibit a unique gene expression signature. Single-cell transcriptional analysis of these MSCs in tumor-associated stroma identified a distinct subpopulation characterized by increased expression of genes functionally related to extracellular matrix signaling. Blocking the TGFß pathway reveals that these cells directly contribute to cancer cell proliferation. Our findings provide novel insight into communication between breast cancer cells and MSCs that are consistent with an epithelial to mesenchymal transition and acquisition of competency for compromised control of proliferation, mobility, motility, and phenotype.


Assuntos
Neoplasias da Mama , Células-Tronco Mesenquimais , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais , Células Estromais/metabolismo , Transcriptoma , Microambiente Tumoral/genética , Humanos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética
16.
Gene ; 851: 146928, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36191822

RESUMO

Bone formation is controlled by histone modifying enzymes that regulate post-translational modifications on nucleosomal histone proteins and control accessibility of transcription factors to gene promoters required for osteogenesis. Enhancer of Zeste homolog 2 (EZH2/Ezh2), a histone H3 lysine 27 (H3K27) methyl transferase, is a suppressor of osteoblast differentiation. Ezh2 is regulated by SET and MYND domain-containing protein 2 (SMYD2/Smyd2), a lysine methyltransferase that modifies both histone and non-histone proteins. Here, we examined whether Smyd2 modulates Ezh2 suppression of osteoblast differentiation. Musculoskeletal RNA-seq data show that SMYD2/Smyd2 is the most highly expressed SMYD/Smyd member in human bone tissues and mouse osteoblasts. Smyd2 loss of function analysis in mouse MC3T3 osteoblasts using siRNA depletion enhances proliferation and calcium deposition. Loss of Smyd2 protein does not affect alkaline phosphatase activity nor does it result in a unified expression response for standard osteoblast-related mRNA markers (e.g., Bglap, Ibsp, Spp1, Sp7), indicating that Smyd2 does not directly control osteoblast differentiation. Smyd2 protein depletion enhances levels of the osteo-suppressive Ezh2 protein and H3K27 trimethylation (H3K27me3), as expected from increased cell proliferation, while elevating the osteo-inductive Runx2 protein. Combined siRNA depletion of both Smyd2 and Ezh2 protein is more effective in promoting calcium deposition when compared to loss of either protein. Collectively, our results indicate that Smyd2 inhibits proliferation and indirectly the subsequent mineral deposition by osteoblasts. Mechanistically, Smyd2 represents a functional epigenetic regulator that operates in parallel to the suppressive effects of Ezh2 and H3K27 trimethylation on osteoblast differentiation.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Lisina , Camundongos , Animais , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Lisina/metabolismo , Metiltransferases/metabolismo , RNA Interferente Pequeno/metabolismo , Cálcio/metabolismo , Domínios MYND , Osteoblastos/metabolismo , Histonas/metabolismo , Proliferação de Células/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo
17.
Results Probl Cell Differ ; 70: 375-396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36348115

RESUMO

The cell cycle is governed by stringent epigenetic mechanisms that, in response to intrinsic and extrinsic regulatory cues, support fidelity of DNA replication and cell division. We will focus on (1) the complex and interdependent processes that are obligatory for control of proliferation and compromised in cancer, (2) epigenetic and topological domains that are associated with distinct phases of the cell cycle that may be altered in cancer initiation and progression, and (3) the requirement for mitotic bookmarking to maintain intranuclear localization of transcriptional regulatory machinery to reinforce cell identity throughout the cell cycle to prevent malignant transformation.


Assuntos
Epigênese Genética , Neoplasias , Humanos , Ciclo Celular/genética , Divisão Celular , Neoplasias/genética , Neoplasias/patologia , Cromatina , Regulação da Expressão Gênica
18.
Results Probl Cell Differ ; 70: 339-373, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36348114

RESUMO

Epigenetic gene regulatory mechanisms play a central role in the biological control of cell and tissue structure, function, and phenotype. Identification of epigenetic dysregulation in cancer provides mechanistic into tumor initiation and progression and may prove valuable for a variety of clinical applications. We present an overview of epigenetically driven mechanisms that are obligatory for physiological regulation and parameters of epigenetic control that are modified in tumor cells. The interrelationship between nuclear structure and function is not mutually exclusive but synergistic. We explore concepts influencing the maintenance of chromatin structures, including phase separation, recognition signals, factors that mediate enhancer-promoter looping, and insulation and how these are altered during the cell cycle and in cancer. Understanding how these processes are altered in cancer provides a potential for advancing capabilities for the diagnosis and identification of novel therapeutic targets.


Assuntos
Epigênese Genética , Neoplasias , Humanos , Fenótipo , Neoplasias/genética , Neoplasias/patologia , Regulação da Expressão Gênica , Cromatina
19.
Hum Vaccin Immunother ; 18(6): 2122494, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36130214

RESUMO

Human Papillomavirus (HPV) causes almost all cervical cancers and many cancers of the anus, vagina, vulva, penis, and oropharynx. The HPV vaccine provides protection to all adolescents from a broad spectrum of cancers, yet HPV vaccination rates remain lower than those of other routine vaccines. Developing effective HPV vaccine interventions is particularly important in rural areas, whose residents have lower rates of HPV vaccination and higher cervical cancer incidence and mortality; however, interventional research in these populations is relatively limited. Furthermore, though rural areas are heterogeneous in many regards, few interventions engage stakeholders to develop community-specific solutions to overcome obstacles associated with HPV vaccination. Based on a review of existing literature, we recommend a multicomponent peer-based approach that includes school-based vaccination and awareness, parental involvement, and stakeholder engagement to increase HPV vaccination in rural areas, and we provide an example of such an intervention in rural Vermont.


Assuntos
Infecções por Papillomavirus , Vacinas contra Papillomavirus , Aceitação pelo Paciente de Cuidados de Saúde , Neoplasias do Colo do Útero , Vacinação , Adolescente , Feminino , Humanos , Masculino , Conhecimentos, Atitudes e Prática em Saúde , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/administração & dosagem , População Rural , Neoplasias do Colo do Útero/prevenção & controle , Neoplasias do Colo do Útero/virologia
20.
Sci Rep ; 12(1): 13361, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922466

RESUMO

High-throughput microRNA sequencing was performed during differentiation of MC3T3-E1 osteoblasts to develop working hypotheses for specific microRNAs that control osteogenesis. The expression data show that miR-101a, which targets the mRNAs for the epigenetic enzyme Ezh2 and many other proteins, is highly upregulated during osteoblast differentiation and robustly expressed in mouse calvaria. Transient elevation of miR-101a suppresses Ezh2 levels, reduces tri-methylation of lysine 27 in histone 3 (H3K27me3; a heterochromatic mark catalyzed by Ezh2), and accelerates mineralization of MC3T3-E1 osteoblasts. We also examined skeletal phenotypes of an inducible miR-101a transgene under direct control of doxycycline administration. Experimental controls and mir-101a over-expressing mice were exposed to doxycycline in utero and postnatally (up to 8 weeks of age) to maximize penetrance of skeletal phenotypes. Male mice that over-express miR-101a have increased total body weight and longer femora. MicroCT analysis indicate that these mice have increased trabecular bone volume fraction, trabecular number and trabecular thickness with reduced trabecular spacing as compared to controls. Histomorphometric analysis demonstrates a significant reduction in osteoid volume to bone volume and osteoid surface to bone surface. Remarkably, while female mice also exhibit a significant increase in bone length, no significant changes were noted by microCT (trabecular bone parameters) and histomorphometry (osteoid parameters). Hence, miR-101a upregulation during osteoblast maturation and the concomitant reduction in Ezh2 mediated H3K27me3 levels may contribute to the enhanced trabecular bone parameters in male mice. However, the sex-specific effect of miR-101a indicates that more intricate epigenetic mechanisms mediate physiological control of bone formation and homeostasis.


Assuntos
MicroRNAs , Animais , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/metabolismo , Diferenciação Celular , Doxiciclina/metabolismo , Feminino , Histonas/genética , Histonas/metabolismo , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...